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Abstract

The main contribution of {his paper is to putstability requirements for convergence of direcl adaptive
periodic controllers on equal footing with requircments for indirect adap tive periodic control, as set
forth by Lozano [19). 11 e resulting stability conditions arc simply that the plant order and delay
arc known a-priori. No prior knowledge of the plant high-frequency gain is used, and persistent
excitation is not required. More iimportantly, no assmnption or kniowled ge is required as 1o whether
the planit is minimurm or nonminimum phase.

1 INTRODUCTION

Anintriguing property associated with gencralized sarmpling mechanisins is their ability to relocate
transmission zeros of theplant. The potential benefit of sampling for zero relocation was noted
in the paper by Astrom, Hagander and Sternby (2]. Subscquent rescarch investigated applications
of generalized sampling mechanisins to suchi problemns as robust control, sitnultancous stabilization,
sensilivity niniimization, andzero placement, cf.,, [10][1 1][1S][17].

Generalized sampling can take many diflerent forns, e.g., multirate sampling, periodic control,
generalized sample- 4yd-hold, €t e, Most approaches have an interpretation as a mathematical “hft-
ing” where a serial to parallel conversion is perforined on the planit input and output signals, and
mappings are considered between the vectorized gquantities.

1 Lozano [19] an imnportant Iiftin g was introduced for which the transinission zeros arc at
the origin. Such lifiings arc denoted hiere as zero aunihilation (7 A) Niftings. General conditions
characterizing the ZA property can be found in Bayard [5], along with several ertendcd horizon
lifting versions which satisfy the ZA conditions. Bxtended horizon liftings have the advantage of
reducing required control torque and the size of the transient response, and have been applied to
problemns in optical instrument pointing [8], and structural vibration damping [7].

The transmission zeros of the ZA lifted plant are at the origin regardless of whether the original
plant is minimum or nommininnn phase. This is important since it provides a mea ns by which a
nonminimumm phase plaut can be “transformed” into a minimum phase lifted plant. In light of this
property, it is not surprising that several stable adaptive controlapproaches for nommiuinnn phase
systems have been developed based on such hiftings  [4][19][21][21],

Of particular interest arc the adap tive controllers of Lozano [19][21] [20], hese adaptive con-




trollers are of the indirect Lype, 1.e., the plant parameters are estimated first, and are then used to
compute the control gains. A main result of Lozano is that only the plant order and plant delay is
required to be known to establish stability.

The present paper will consider direct adaptive control for the same class of Jiftings. The main
contribution of this paper is to put stability requiremnents for convergence of divect adaptive periodic
controllers on equal footing with requirements for indireel adaptive periodie control, i.e., that the
plant order and delay are known a-priori. No prior knowledge of the plant high-frequency gain is
used and persistent excitation is not required. More tportantly, no assummption or knowledge is
required as to whether the plant is winimum or nonminitnum phase.

2 I3 ACKGROUND

A brief overview of zero anmihilating liftings is given in Appendix B. FPhe plant representation after
zero annihilating lifting is of the general form (cf, (B.4)),

Yi o AYi o HTUg (2.1)

where A £ Sy/]asg' QAL £ Sy HaSE ¢ 1t the vector Uy ¢ R™ s the lifted plant
input and Yy € 1"y is the lifted plant output. For adaptive control purposes we will use Lozano’s
lifting [19] corresponding to (2.1) with oy = 0y = 1, and /I nonsingular,

It is emphasized that any controllable and observable linear time-invariant plant can be lifted into
the formn (2.1) using ouly knowledge of its plant order and delay [1 9]. Furthermore, the nonsingularity
of 1/ is ensured simply by the controllability and obscrvability of the original (unlifted) plant arid
dots not depend 011 whether the true (unlifted) plant is minimum or nontnininum-phase.

Fhe discussion will focus on developing a stable adaptive law for (2.1)

A rcarrangementof (2.1) gives the equivalent plantrepresentation,

Lincar Counlrol Formn

Up s KYp 11 LYr = Ony (2.2)

where,
N: - H'4 1L n! (2.3)
O [N |1 s D, DY) (2.4)

Representation (2.2) is said to be in Livear- Control Forne (¢ f., Goodwin and Sin [14]) since the
control is an unknown lincar combination of measured sig nals. One iimportant advantage is that a
deadbeat controller can be written dircetly 1 terius of the gains N and L as follows,

Deadbeal Conltiol
UL = NYs 4 LY onf (2.5)
e Y 10T (2.6)
where Y2 i's a specified trajectory to be tracked by Yy Hence, it is only necessary to estimate K
and 1, 1 (2.2) and then “copy” the estimates for implementing the deadbeat control (2.5).
Lozano has developed severaladaptive controlapproaches [1$)] [21][20], bascd ontherepresenta-

tion (2.1 ). Lozano’s approaches are “indirect” 1 the serise that the plant parameters Aand 11 are
first estimated from (2.1) and then used to compute the control gains 1i and I in {2.2) using the




formulas in (2.3). From (2.3) it is scen that this requires a numerical inverston of the estimate of 1/
cach iteration. In order to ensure invertibility of this estiniate, Lozano introduces a modification in
[19] based on a polar decomposition.

11 contrast to Lozano’s approach, the present paper will focus ona  “direct” adapt ive scheme,
In a dircet schenie, the gaing K oand L in control law (2.5) are estunated directly from the plamt
representation (2.2). Farlier stable direct adaptation sclcimes have been developed for periodic
control inOrtega [24] and Bayard [4]. The present dircel adaptive approach is similar to those in
[24][4], exceptthatthe Recursive least Squares (RLS) algorithim will be used rather than simmple
normalized projection, and tuning will bebascedoraninimization of the input error rather than the
output error. Theadvantage of this approach is that only knowledge of plant order and delay 2's
required for stability, i.c., the requircinents for prior partial Markov parameter inforimation in Bayard
[4] andfor existence of Lyapunov equation solutions in Ortega [24] have been relaxed.

Aw added benefit of dircet adaptive control is that numerical inversion of the estimate 4/ of 1
is avoid ed. However, eventhough /I i's not inverted, its nonsingularity is still required to ensure
adaptive st ability. llence, the polar decomnposition introduced by Lozano will be needed to corn plete
the stability proof.

Several simulalionstudiesindicating the perfortnance advantages of this direct adaptive approach
relative to the earlier direct approachesin [24][4] canbe foundinJakubowskiet. al., [15][16].

Simnply stated, the main contribution of this paper is to put stability requirements for conver-
genee of direct adaptive periodic controllers on equal foot ing with requirciments for indirect adaptive
periodic control, as put forth Lozano [19]. The resulting stability conditions are simply that the
plant order and delay arc knowna-priori. No prior knowledge of the plant high-frequency gain is
uscd and persistent excitation is not required. More importantly, no assumption or knowledge is
required as to whether the plant is minimum or nomminimuin phasc,

3 STABLE AD AP T1VE C ONTROL,

In this section, a stable direct adaptlive controller is defined for the plant Iifting, (2.1).

3.1 Input Prediction Error

Given an estimate O, 1 of © available at time b, one can construct the imput prediction,

Ul = O (3.7)

and the associated input prediction error,
I N op U - & . 9 Q0
et UL Ues @l gy (3.8)

where,
A .
(]’A L1 0" (‘)k. 1 © (.{9)



3.2 Norn alized Signals
For adaptation purposes, it is uscful to define the following normalized quant ities,

d .
. Tk .d L oy I, .
oz - ;TR - O PSR 3.10
T i SRS I SR Mk (3.10)

where the normnalization factor is defined by,
e I R 2l (3.11)

Dividing through by 1, in (3.8) defines the normalized prediction error equation,

oA -
]'/k : Q’k, 17k (3]?)

3.3 A daptation Algorithin
Fquation (3.12') is alincar-in- the-parameter error expression for which many adaptation inethods

apply. I'he dl.sell.ssloll here will{focus onthe Matrix Parameter Recursive Least Squares (M P-RLS)
algorithnn,

MP-RLS Adaptation Algorithm

. . Eyil by

Or: Op - "k 3.13
R 0 L (3.13)
, , Iy m‘;] .

P Frog- - 3.14
k By T (3.14)

It is shown in [G] that the MP-RLS algorithin satisfies the following properties,
|5 FRR IR DY A R 9 A

12 v <vp.y <. < vg where v ! 17{<]'k] ld* }

13 0(Fy) <o(Fe 1) < ... <0(Fp)

T4 Vg oo Fip = 0

o 0 {Pp @]} < wo -0 (1)

P6: ding. oo (O - Op )= 0

7 B oo Pyt Fao

18 hinpeoon Fio 1t = 0

PO: litng oo Op = Oy = O Bl P 1



3.4 Adaptive Control Law - Discussion
Au adaptive control law is defined by replacing © in (2.5) by its estimate, i.e,
Uk z é)k, 17'1{: (3]5)

T'his control law is for discussion purposcs only and will be modified subsequently.

Lel the oulpul tracking crror be defined as,
I I (3.16)

Using adaptive control law (3.15) and the MP-RLS estimator, the output tracking crror is related
to the mput prediction error as follows,

. vl - Uy o f" a1
Py - * k. Op. 17 - O ]7';3 (J.] /)
-1 o
Lioi(We- Y 5 4 e
1ok 1(Ya i) YA (3.18)
1-
where the normalized tracking error is definied as
. c
& - 3.19
. (5.19)

Remark 1 For control purposes, itis desired for theoutput tracking error to convergeto zero.
Given that Jix gocs 1o zero by properly 1'4 of theestimator, it is clear from (3.18) that & will also
go to rero if _o’(]/k, 1) is bounded away from zero. Unfortunately, while the t rue gain 1, satisfics this
property, the estimate Ly produced from the recursive estimation scheme has no such guaranteed
propertics. The possible singu larity of the estimate L destroys the above argument. for convergence
of thie tracking errarand is the essence of the difficulty associated with proving stability,

3.5 Adaptive Control 1 .aw - Modified

Lozano overcame the singularity problem for indirect adaptive contdrol in [19] by introducing  a
modification of the matrix estimnate based on a polar decomposition. A similar approach will be
used here for direct adaptive control.

Consider the modified estimate, ) ) _
Op= O -1 It 1 (5.20)

Ry < 101Q4) (3.21)
Here, matnix Q@ determined from a polar decomposition,
Li o QuSi (3.22)

where Q) is a real orthogonal matrix, and Sy = S} >0 (cf., Barnett [3]). Note thatthe polar
decomposition (3.22) is simnilar to the standard Q It factorization, (i. e, where Q is orthogonal arid R
is upper triangular), except that Sy is symmetric and non-negative definite. Conceptually, the polar
decomposition can be written in terins of the singular value decotposition Iy = Uyv?as follows,

L= (VT (v avT) (3.23)




noting that Q. = UV" is an orthogonal matrix and Sy - VUV s symimetric non-negative definite
by construction. The polar decomposition of a matrix gets its name from analogy to the polar
decomposition of a complex munber z = ¢4 |z) since S > 0 plays the role of the nonnegative

. . . . y 117 . .
quantity |z] and any unitary matrix @ can be written in the form W owith W Hermitian,

«

Using the modified estimate (3.20), a modified adaptive control law can be defined as,

Modified Adaptive Conltrol

Up: O 18 ' (3.24)
O 1 Kooy | 1w 1] (3.25)
where, ) ) 3
Nioy:s Neogo QoS jimee (3.26)
Taor: Loy Qe afi fios (3.27)

and miy. 1 and fi. 1 form the partitioned Cholesky factors of Fy. 1, Le.,

Fyoy: Fvadl >0 (3.28)
. 7111, 1
AN I (3.29)

3.6 Stability Results

Themam result is given next

Theorcinl

Let the lifted plant (2.1) be controlled by the modified adaptive control (3.24) and MP-R1.S cstima-
tion algorithin (3.1 3)(3.14), to follow the bounded trajectory [[VE| < k. Thenw the signals Uy and
Yy, remaim bounded and the tracking erior goes tozero asymptotically,i.c.,

Jin (Y- Y- 0 (3.30)

Proof: If the modified adaplive control (3.2A) is applied to the plant (2.1) at cach tie &, the
pormalizedinput prediction error (3.10) b ecornes,

- Ut - U - . - R o
]','k z Sk k = (')k» 17k - ()k‘~ 17‘g (-{3])
1-t
s Op - Op Pl R i ik (3.32)
R T G L N [ N AL (3.33)
LY Y@ .
Peae Y8 g (3.34)
1-} Mk
Taking the linit of both sides of (3.34) aud applying (1'4) and{(P'8) yields,
Le (Y- Y2
N 2 - Y0 (3.35)

k-vco IR



Since by Letnma A2 of Appendix A, a(Lg. 1) > 0 is bounded away from zero, it follows from (3.35)
that.

. Ex
1 3.36
Llflri 1] Wi Q0 ( ;())

Note aso that, . )
ek .,>,;]> H&-\\; (3,37")
@ )ty

where we have used the fact that 2ix < 1 -1 7. Conibining results (3.36) and (3.37) it follows that,

lim -”ng? -

. = 0 3.38
k-soo 1 -} W ( )

Now consider convergence of the unnormalized track ing error &. Using the triangle inequality, one
can verify the following lincar boundedness condition,

ks Y sl I <Y - Y YR YA YR I (3.39)

: & - 2l er <er -l oeq ax |I& 3.40
€ ol U A e <er -l U‘;ng\kllfv” (3.40)
where €1 = 2k > I ALY and eo = 2. Given convergence of (3.38) and linear bounded ness
condition (3.40), theKey Technical Lemnma (Goodwin aria Sin [14]) ensures that,

*]illl = 0 (3.41)

and that 7, retnains bounded. Boun dedu ess of 7 implies the boundeduness of Yy which together
with 1’8, 1°5, and (3.24) inply the bounded ness of Uy ]

Remark 2 1 lightof the discussion inRemark1, themain idea behind the stability proof can
be understood completely from (3.34). This relation uses the modified gain 7. arid has the extra
term Ry 1 Fyo 7 compared with equation (3.18), discussed earlier, This extra term is due to the
modification (3.20) of the paramcter estimate. Somewhat rernarkably, this termn vanishes by property
1’ 8 of the estimator. Since the modified estimate Ly 1 is nonsingular by design (i.e., T cnnma A2),
the stability proof ontlined in Rernark 1 is recovered.

It appears that property '8 was first used for proviug adaptive stability inthe paper by L ozano
and Goodwin [22], although the idea is hplicit in ar carlier paper by 17 . de Larminat [25]. In
[22], P8 follows as a property of the normalized RLS algorithin with constant trace. Although the
conslant trace is dropped in the present MP-RIL S algorithu, it canbe show n (cf. [6]), that property
P8 follows directly from convergence of the covariance matrix in property 7. .

4 CON CLUSIONS

It is shiown that only knowledge of the plant order aud delay is required to achieve stable direct
adaptive control of nonininir nuim phase systerns using periodic controllers. This relaxes requircments
for stability found in earhier direct adaptive periodic control approaches involving the existence of
solutions to Lyapunov equ ations [24], or partial plarnit Markov parameter knowledge [4].

As a result, stability requirements for convergence of directada ptive periodic controllers tire now
on equal footing w ith requiremnents for indirect adaptive periodic cont rol, as established 1n the work
of Lozano [19].

Despite theoretical stability results, there are several open issues whichremainto be resolved
before the present approach can be made to work reliably in practice:




11. Reduction of adapt ive transient
12. Modifications tomeetactuator saluration constraints
13. Robustness to bounded process/1neasurement noise

14. Robustnesstomodel Order/dcldy mismatch, unmodelled dynanics

Concerning 11 and 12, large transients are often experienced when simulating systems with adap-
tive periodic controllers. This is partly due to the certainly cquivalence property of the adaptive
control which is coutrolling the wrong plant with conviction most of the time. I addition, even
the transient respousce in the nonadaptive case car be large due to the fast “inverse plant” nature
of the control. Unfortunately, pole-placement strateg ies offer little relief since poles of the lifted
sysl e are associated with the slow time scale and hence must be kept near the origin to raaintain
rcasonable performance. For the nonadaptive case, it has been shownin [5][7(] that transients and
control sig nals can be sig nificantly reduced using exterded horizon liftings. It is hoped that this
sar ne approachcan lead to reduced tra nsients in the adaptive case.

The algorithmn in the present paper is not robust to bounded noise, and serves primarily to show
equivalence of stalHility conditions between direct and indirect approaches under ideal conditions.
Modificat ions similar to the deadzonein [19] are presently under consideration to address issue 13
inthe direct adaptive case.

lssue 14 is perhaps themost difficult to address. The warmngs contained in Goodwinand Feuer
[13] regarding generalized sampling methods are most relevent for issue 14, since one must rely
on high frequency plant dynamnics for ichable control over low frequencies. A method proposed
in Lozano [20] is applicable to overpa rai netrizat 1on in the regulati on problem; bhu t presently has
no exlension to the tracking problemn. Alternative approaches based on multiple inodel banks are
emerging, and may play an important role in the future (¢ f., Morse [23]).
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A APPENDIX A: Supporting Results

The whole point of Appendix A i's showthatthe modificd gain (1. ;) is bounded away from zero.
L cemma Al is used to prove Lemmma A2 which contains the fit 1al desired result.,

Lemma Al Let the MP-RLS algorithin (3.13)(3.14) be applied to the normalized error equation
(3.12). Thenthe estimate Liyandits polar factor Si in (3.22) arc explicitly bounded from above as
follows,

Il <901 (4.1)
Sk < V2% -1 (71.29)
where,
v ir{()()” }oAwva-o(I) (A.3)
Y'roof: Consider the matrix inequality,
(x-1 VYN 1) <o xx” o yy™) (A.4)

lLetting X = © and ¥ = &y in (A4) and using definition (3.9) gives,

0,07 <2007 4 ¢ral) (A.5)

At this point, one can construct the following sequence of ineqgualitics,

il < 6,67 (A.6)
< 200" ) (A7)
< 20{00" ) ¢l ' (A.8)
< 2 {00} 4 vg o (1)) 1 20 -] (A.9)

Here, inequality (A.6) follows from the fact that ©,07 = Ky KT - Ly L7 Incquality (A.7) follows
from (A. b); Inequality (A.8) follows from the fact that X <t {X }-1 for any symmet ric nou- negative
definite matrix X; Incquality (A .9) follows from properly 1'5 of the estimmator; and definition of «
in(A.3). This proves result (A,]).

Using the polar decomposition (3.22) in (A.9) gives the relation,
QeSiQT < 2a -1 (A.10)
Hencee, for any vector vy,
v Siu s v QU SIQD) Quy < 20y QT Quy = 2a |lyl)? (A.11)

where use has bee nmade of (A.]()) and the orthogonality property Q1 Qi = 1. Since y is arbitrary
i (A.1]), ouc can conclude that, )
SP<2a 1 (,4.12)

which gives (A .2)upon taking the square mot. .

Lemma A2: Let by be a positive scalar such that,

I"L>001>0 (A4.13)



Letthe MP-RLS algorithim (3.13 }(3 .14) be applied to normalized error equation (3.12). Then the
gain modification defined hy (3.20) ensures that

e b
1> 10 (A.11)
N
where,
vz 2 nmx(’v(,,\/i)n) (/1.15)
a: {00} Jug . o (o) (A.16)
I’roof: Define, .
[T N (.4.17)

Rearranging (A.17) and using (3.29) gives,

O: Op- il : (A.18)
L Ly Pefi (A.19)

Applying th ¢ matrix inequalhity,
(x W)X p-) <20 XX 4 YTY) (A.20)

with choices X = Ly and Y = B [ Lo (A19) gives,

1ML <. (J’/{i,k - f;"ﬁ[ﬂkfk> (A.21)

At this point one can construct the following sequence of inequalitics,

1< 2 Ll STk a5 A (A.22)
- ( )
< ?(ii{]ﬁk A S fe o { @l 14{}) (A.23)
< 2(12’,{‘12,(. 1 f}’fm,> (A.24)

T ?'<S£ - fg.fk@()) (A?v‘:))

< 9 <\/‘2(: St S vo> (A .26)

< 7(51» - fZ’h) (A.27)
: 7(91(%@ A Qkf,;"fk): 1Q% Lk (A.28)

Here, inequality (A.22) follows from (A.21) by using the matrix incquality X7Y X < XTX 6:{Y'}
valid for any symmetric non-negative definite Y; Inequality (A.23) follows by using the definition
of Brin (A ] 7), Choleskyfactors(3.28),andpropertics of the trace; Incquality (A.24) follows by
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property 2 of the estimator; Equality (A.25) follows by substitutiug the polar decomnposition (3.22);
Inequality (A .26) follows by result (A.2) of Lemma Al; Inequality (A.27) follows by the definition
of 4 in (A. 15); and equation (A. 28) follows by the orthogonality of @ aud the structure of the
modified gain Iy in (3.27).

Using, (A.13) and (A.28) gives upon squaring,
0<b2- 1< LY (UL <ALl Qe g = 210 T (A.29)
Rearranging, givesthe desired result (A.14). .
B APPENDIX B: Zcero Annmihilating Liftings

Consider the input/output model,

Az Dye = Bz Mug (B.1)
A1) 14 >:a,-z’i; Bz 1) - >:I;iz'i (1:.2)
iz ] iz}

where polynomials Aand B arc assumed to be relatively prinic. It is assumned thatby s/ 0, so that
the polynomial B can be factored un iquely into the form B(z7') =27 @ byB(z" 1) where B(z™ 1) is
monic and d = 1 is the plant delay. The choice d = 1 is for convenicnee only and is not a fundarental
restriction. Jn the case that d 7 1, all subsequent expressions car | be appropriately modified without
loss of generality.

Consider breaking the input and output signals into windows of length N > 2n - 1 where,

YEN41 T U N
] YN 2 UEN 41
vy [T v
YEN4N - UEN{N-1-

Albertos [1] has shown that the mapping between the vectorized quantities obeys the relationship,
Y(ky: AY (k- D)4 UK BUMK- 1)
where matrices A,, Ha, Ba can be written 1 terms of the elements of the polynomials A and B,
It is uscful to construct the “small” vector Y from certain commponents Yy (k) as follows,
Ye £ 8, Y (k) € Iy
where Sy € Rov*N g a seleclion matrix which sifts out oy clements of Y (k) for inclusion into Y.

The components of Yy(k) that arc not putinto Yy define the co)//pl(T)/enff7ry outputvector
¥Yi£=5,Y, (k), with associated sclectionnatrix Sy.

As a key step, it will be assuwmed that only cerlain components of Uy (k) can be chosen nonzero.

These components define the vector Uy = S Uy (k) with associated selection matrix Sy,. The fact
that only sclected components of Uy can be nonzero is mathematically stated as,
(1- S’;’A'S“)Uj(k) = 0 (B.3)

The vectorized quantitics Yk, Y7 Uk de fine a “hilfted system”™. 1t can be shown [71][5] that the
lifted system has the following dynamics,

11




Lifted System Dynanties

¥ sJAs{ S, :10(5'1;):’: SyBaSy | [ Yo
e SgAasy  SpAu(S)T Sy BuS, Y
Uy 0 0 0 ] il
Syl ST
4| SgHaSE | Us

]

Furthermore, for special choices of selection matrices Sy and Sy givenin [4]1[5], the system
dynarics (B) simphify to,

%x Sy AaS) Vi s - Sylly S UL (13.4)
YE 2 S5 AGST Yoy SEHLSE U (13.5)

Itis notedfrom (11.4)(11.5) that, thecomplementary signal Y uglonger couples into the Yi dyainics.
Purtherinore, the delayed input has vanished from thedynamics. With this structure, the transmis
sion zeros from Uy to ¥y have been placed at the origin, and the class of liftings is said to be zero
annihilaling. General classes of suchzero annihilating liftings were developedinBayard [4][.5], where
Lozano’s lifting [19] can be shown to be the special case N :2nandoy:o0,: 2. Furtherinore, the
matrix premultiplying the control Uy can be shown to be full rank, and herice is always invertible
for control purposes (inversion is in a minimum-norm sense for nonsquare li ftings 6,7 a,, [5]). The
mainimportance of theseliftings is that the lifted transfer function from Uy to ¥4 is minimur- phase
regardless of whether the original plant is minimuimn or hon-minhmum phase.

This paper focuses on adaptive control for the top equation (13.4), This is reasonable since (B.5)
docs not couple into (11.4), andthe comnplementary signal ¥,¢ is a bounded function of both Y}
and Uy, Indeed, any adaptive contr ol scheme which ensures boundeduess of Uy and Yy will ensure
boundeduess of the complementary signal ¥ 2.
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